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Abstract

Effective interaction with moving objects and the ability to infer and predict their motion (a
core component of “intuitive physics”) is essential for survival in the dynamic world. How
does the primate visual system process such stimuli, enabling predictive capabilities for
dynamic stimuli statistics like motion velocity and expected trajectories? In this study, we
probed brain areas in the ventral visual pathway of rhesus macaques implicated in object
recognition (areas V4 and inferior temporal, IT, cortex) to evaluate how they represent object
motion speed and direction. We assessed the relationship between the distributed population
activity in the ventral stream and two distinct object motion-based behaviors—one reliant on
information directly available in videos (speed discrimination) and the other predicated on
predictive motion estimates from videos (future event predictions). Further, employing
microstimulation strategies, we confirm the causal, functional role of the IT cortex in these
behaviors. Our results underscore the need to re-examine the traditional functional
segregation of the primate visual cortices into "what" and "where" pathways and provide
empirical constraints to model their interaction for a better circuit-level understanding of
visual motion and intuitive physics.

Keywords:

Visual object motion, ventral stream, NHP electrophysiology, population decoding,
psychophysics
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Introduction

Primates live in a dynamic and complex environment in which the integration of various
sources of information about objects is essential for survival. Motion and form are two
fundamental aspects of intuitive physics for primates, as they enable the recognition of
objects in the environment and the prediction of their behavior, ultimately facilitating the
primate's ability to interact with and navigate their surroundings 1.

The processing of various object features such as object shape, position, and motion in the
visual system has been traditionally discussed in the context of the two-stream hypothesis
comprising two anatomically and functionally disparate neural pathways in the primate brain
– the dorsal and the ventral stream 2–4. Over the last decades, much progress has been made in
identifying the brain areas 5–9 and the underlying computations 10–13 implicated in visual object
recognition in the primate ventral visual pathways. On the other hand, mechanisms of visual
motion perception have been tied almost exclusively to the dorsal stream 14–16. One prominent
feature of such studies while probing object recognition is the predominant use of stationary
stimuli, and for studies on motion perception, the use of controlled stimuli like random dot
kinematograms or moving gratings. Notably, decades of these studies have yielded a
significant understanding of static object processing in the ventral stream 9 and motion
processing (specifically of low-level visual cues like dots and gratings) in the dorsal stream
17. However, higher-level cognitive functions primarily involve the motion of visual objects,
and it is unclear whether inferences made about the neural mechanisms of static object
perception and low-level motion cues are sufficient to develop large-scale models of the
visual system that can mimic primate brain mechanisms and behaviors in real-world,
dynamic tasks 18,19.

To represent object motion and support primates’ intuitive physical understanding of the
world, it is reasonable to assume that object form and motion information must be integrated
at some point (sometimes also considered part of the “binding problem” 20). Does the object
form information available in the ventral stream combine with motion information extracted
from temporal image streams in the dorsal stream? If so, where and how? This integration
could occur independently within either stream, downstream of the inferior temporal (IT)
cortex, or through a combination of all these pathways. The complexity of this integration
makes it challenging to test these theories conclusively. We reasoned that falsifying the
independence of the paths could be a promising starting point for exploring the hypotheses
further. Therefore, in this study, we exclusively probe the ventral stream during motion-based
tasks. Why the ventral stream? While several studies 21,22 have highlighted the presence of
object form information in the dorsal stream, the richness and specificity of object
representation in the ventral stream 6–8 and its causal links to object-based behavior 23 make it
our first circuit of choice. In addition, given that retinotopic maps are present throughout the
visual system (including the IT cortex 24), information about object position might be present
in the activity across most visual areas. Consistent with this notion, a previous study 25 has
already provided evidence that the IT cortex, classically thought not to be involved in spatial
processing, can also represent the object's location. Hence, it is reasonable to assume that the
object position information could be temporally integrated to synthesize motion velocity
signals available within the IT cortex or downstream regions like the caudate 26 and the
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prefrontal cortex 27. Furthermore, electrophysiological studies have also shown that some IT
neurons respond to gratings solely defined by motion 28, as well as more complex forms of
motion present in biological actions 29,30. Also, it has been shown that IT neurons respond
more strongly to moving shapes that are degraded than clear ones 31. Despite these
preliminary findings, how such information relates specifically to object motion speed and
direction and links to behavioral measures remains poorly understood – and hence is a
significant focus of this study.

This study employed a multifaceted approach to investigate the ventral stream’s role in the
primate visual system's ability to process and predict dynamic stimuli. We began by mapping
the neural responses to static and dynamic scenes, discerning the nature of object motion
speed and direction representation (in relation to object identity representation) within areas
V4 and IT. By formulating temporal and instantaneous decoding strategies (linking
hypotheses), we assessed the IT cortex's role in velocity discrimination and predictive tasks
that probe the animals’ capability to develop intuitions about the physical properties of
objects, like their motion. Our results demonstrate the causal role of the ventral stream during
dynamic, object motion-based tasks and challenge the traditional segregation of the "what"
and "where" pathways in the visual cortex, suggesting a more integrated approach to
understanding motion processing and predictive capabilities. Through these experimental
tactics and inferences, our study contributes to a more nuanced model of visual motion and
intuitive physics at the circuit level within the primate brain.

4

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.23.581841doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?E3yklt
https://www.zotero.org/google-docs/?CEJ2OQ
https://www.zotero.org/google-docs/?JPpZ1r
https://www.zotero.org/google-docs/?mrcNFM
https://doi.org/10.1101/2024.02.23.581841
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results

As outlined above, a critical premise of our study is that the distributed population activity
across the macaque IT cortex provides accurate estimates of not only an object’s identity 7,8

but also its position 25. For instance, for an image of a plane (shown in Figure 1A, left
panel), three latent variables (out of many) could be reported – this object is a plane at the
horizontal and vertical positions of x1 and y1, respectively. Figure 1A (right panel)
demonstrates one possible way (as inferred in previous studies 25) to decode these latent
variables from the IT population activity (by linear weighted summations of the population
response). Therefore, we start by replicating object position estimation from IT population
activity. We performed large-scale neural recordings across the IT cortex in 3 macaques (total
600 sites) while they passively viewed images presented foveally within 8 deg of visual angle
(640 images, eight objects, 80 images per object; see Methods) for 100 ms each with multiple
repetitions. We then trained regularized linear regression models (cross-validated) to map the
population IT activity onto the object’s horizontal (x) and vertical (y) positions. Consistent
with previous results, we observed that these regression models could use IT activity from
held-out images to predict the corresponding spatial positions of objects with high fidelity
(Pearson R = 0.73 for x-position and 0.77 for y-position with 600 neural sites, Figure 1B).
We also observed an increase in the precision of the position estimates with a larger sample
size of neural sites. This scaling of accuracy with the number of sampled multiunit sites was
consistent with previous reports (as indicated by the dashed lines representing reported
correlation strengths 25, Figure 1B), bolstering our confidence in the replicability and
reliability of our approach.

Given these results, we next asked whether IT population activity could also predict aspects
of the object’s change in position – motion (e.g., the plane moving to the right at a specific
speed, Figure 1C). We parameterized object motion in terms of its direction and speed. In the
following sections, we address the ability of area V4 and the IT cortex to predict each
component in turn. One possibility is that neural activity that contains information about an
object’s instantaneous position could be integrated over time to represent an object's direction
and speed. For instance, a long short-term memory (LSTM) network-based decoding strategy
32 that utilizes the full dynamic signal from the IT cortex could be leveraged to estimate the
object’s motion variables. On the other hand, one could also ask whether instantaneous
activity in IT could be linearly combined to estimate the motion variables (similar to the
position estimates). Two potential outcomes of these decoding strategies are visualized in
Figure 1D. If we cannot falsify the integrated IT signal readout hypothesis (Figure 1D, top
panel, H1), it would suggest that neurons downstream of the IT cortex (or within the IT
cortex) could rely on a temporal accumulation of the IT population responses to decode
motion velocity accurately. Conversely, if the instantaneous readout hypothesis cannot be
falsified (Figure 1D, bottom panel, H1), it would suggest that neurons within the IT cortex
contain linearly separable motion information that accurately enables instantaneous motion
velocity decoding. Alternatively, it is also possible that one could only decode object
positions for stationary objects from the IT cortex, and this ability is lost when the object is
set in motion (H0, Figure 1D).
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Figure 1. Object position estimates and hypotheses for decoding motion variables from the IT
population activity. A. Illustration of the neural response to a static scene in the primate visual
system. The image depicts a plane at coordinates (x1, y1) and showcases how the neural activations
within the IT cortex can be mapped to object categories8 and spatial positions25 (as downstream
linking propositions). B. Pearson correlation between the number of neurons and their ability to
predict object position. With 600 neural sites, we achieved correlations of 0.73 and 0.77 for the x and
y positions, respectively. We observed increasing precision in position estimation with a larger neural
population. Dashed lines indicate previous reports of correlation strengths with 168 IT sites 25,
consistent with our results. C. Dynamic scene processing showing the same object, a plane, now
moving to the right at a certain speed. The image conveys how neural responses, r(t), evolve over time
and can be analyzed through time-integrated models (e.g., LSTM) or instantaneous linear readout
methods (e.g., linear discriminant analysis, LDA) to decode motion direction and speed. D.
Hypothetical outcomes of the two proposed readout strategies, suggesting predictions for motion
direction prediction accuracy. H0 represents the null hypothesis (no difference), and H1 represents the
alternative hypothesis (a difference), with the upper panel for integrated signal readouts and the lower
panel for instantaneous readouts.

Cortical response dynamics across the ventral stream can be integrated to predict object
motion direction accurately.

We first assessed the efficacy of temporally integrative decoding strategies to test how well
we can decode object motion direction from the population activity distributed across the
primate ventral stream. To this end, we recorded large-scale activity across the V4 and IT
cortices in two macaques while they passively fixated on brief videos (600 ms) presented at
the central 8 deg (see Methods). We employed Long Short-Term Memory (LSTM) networks
32 to process the dynamic neural responses from area V4 and the IT cortex. We trained an
LSTM network with 200 hidden units (Figure 2A, see Methods) to integrate neural responses
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(of 192 IT and V4 sites, respectively) over a specific time window (starting from the video
onset) and predict the motion direction of the visual objects (400 videos, ten objects, 40
videos per object, eight evenly distributed motion directions). Both V4 and IT responses
could be temporally integrated to produce motion direction estimates significantly higher
than chance levels (as estimated by permutation tests, Figure 2B). We observed substantially
higher performance obtained from IT sites than V4 sites (%Δ( IT - V4) = 14.54%, paired
t-test, p< 0.001; as estimated by integrating the neural signals from 0 to 600 ms post video
onset) in predicting motion direction following the onset of the stimuli. Further analysis also
revealed that the decoding accuracies obtained from IT sites scaled more rapidly with the
number of sampled sites (Figure 2C; compare blue data points (IT) with magenta (V4)),
suggesting a denser and possibly more precise representation of motion information in the IT
cortex. Of note, these scaling analyses depend on several factors: video repetition number, the
number of training examples per category, the total number of categories (e.g., motion
directions), etc. Therefore, we strongly encourage the readers to consider only the relative
comparisons between IT and V4 made here (performed under the exact training parameters)
and not the absolute values. Next, we explored the effectiveness of an instantaneous (30 ms
bins of neural responses) linear readout approach, deploying a linear classifier (linear
discriminant analysis, LDA, classifier, see Methods) to decode motion direction from the
same IT and V4 responses (across 192 sites from each area).

Figure 2. Comparative analysis of temporal and instantaneous decoding strategies in primate
visual cortex for motion prediction. A. Schematic representation of a Long Short-Term Memory
(LSTM) network processing dynamic IT responses to predict motion direction. This depicts the
mechanism by which time-sequential neural data could be integrated (likely in an area downstream of
the corresponding brain area) to form an accurate prediction of object movement. B. Accuracy of
motion direction prediction over time using an LSTM decoder, comparing the performance of 192 IT
(blue) and V4 (magenta) neural sites. The graph shows the temporal evolution of the decoding
accuracy following the video onset, highlighting the differences between the two brain regions – IT
decodes being significantly higher than V4 (%Δ( IT - V4) = 14.54%, paired-t-test, p< 0.001; as
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estimated by integrating the neural signals from 0 to 600 ms post video onset). C. Scaling of
decoding accuracy with respect to the number of neurons from IT and V4 sites using the LSTM
network. The plot demonstrates that increasing the number of neurons enhances the predictive
capability, with IT sites showing a steeper accuracy gain. D. Schematic representation of an
instantaneous linear readout strategy employing a linear classifier to decode motion direction from
instantaneous IT responses. If accurate, this model would emphasize a direct, non-sequential approach
to estimating motion direction – as a predictive signal contained within the IT population activity. E.
Performance comparison of instantaneous linear readout for motion direction decoding between 192
IT (blue) and V4 (magenta) sites over time, with IT sites significantly outperforming V4 sites (%Δ( IT
- V4) = 11.1%, paired t-test, p< 0.001; as estimated at the time window 550-600 ms post video onset).
The blue and magenta dashed lines refer to the accuracies achieved by IT and V4 using LSTM-based
readouts, respectively. F. Analysis of how decoding accuracy scales with the number of neurons in an
instantaneous readout model. Similar to the LSTM approach, an increase in neuron sample size
corresponds to better performance, particularly in IT sites.

Object motion direction can be linearly decoded from V4 and IT cortex population
activity.

Motion signals (as direction or speed tuning functions) in the primary visual cortex 33 or areas
like MT 34 can be estimated without nonlinearly integrating neural responses (as in Figure
2A-C) recorded from these neurons. If object motion velocity can be directly inferred with
linear decoding algorithms – it would suggest that an upstream integration of spatiotemporal
cues (like in areas V1 and MT) could be inherited in the V4 and IT cortices. We used linear
discriminant analysis classifiers on the ventral stream activity to test how accurately we could
read out the motion directions from these neural responses. Comparing the performance of
linear decodes from 192 IT and V4 sites independently, we observed that both IT and V4
produced significant decoding accuracies (above 0.5, i.e., chance level), suggesting the
presence of an instantaneous motion signal within the population responses in these areas.
Similar to the LSTM results (Figure 2B), we again observed that the IT sites displayed
significantly higher (%Δ( IT - V4) = 11.1%, paired-t-test, p< 0.001; as estimated at the time
window 550-600 ms post video onset) decoding accuracies than V4 (Figure 2E), further
affirming the robustness of the IT cortex's predictive signal for motion direction.
Interestingly, the non-linear integrative readouts (Figure 2A-C) produced a higher decoding
accuracy (as indicated by the respective dashed lines in Figure 2E) than the linear readouts.
This suggests that additional transformations of IT responses (likely in downstream regions)
produce more linearly separable solutions for motion velocity readouts – a hypothesis to test
in future studies. We also estimated how decoding accuracies scaled with the number of
neurons within the instantaneous readout framework (Figure 2F). Consistent with the LSTM
findings, increasing the neuronal sample size improved decoding performance (at a higher
rate for IT than V4), underscoring the IT cortex as a pivotal region for interpreting visual
motion cues. These observations collectively suggest that compared to area V4, the primate
IT cortex harbors a more potent and scalable mechanism for predicting motion direction,
whether through the integration of temporal sequences or instantaneous readouts. Hence,
from hereon, we have primarily focused on IT-based decoding results.
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Object identity decodes precede object motion estimates.

Most previous studies 6,7,35 almost exclusively test object identification capabilities from the
IT cortex while presenting static images to the animals. To shed light on how the IT-based
identity estimates of the objects tolerate the position shifts introduced during motion within
the central 8 degrees of field of view, we further estimated the object identification accuracies
from IT population activity using the non-linear (LSTM) and linear (LDA) decoding
algorithms. We first observed that object identity information is accurately decoded using
LSTM-based temporally integrative algorithms (Figure 3A), with significantly higher
accuracies than the motion direction estimation (%Δ( identity - motion) = 50.3%, paired
t-test, p< 0.001; as estimated at the time window 570-600 ms post video onset), using the
same algorithms (compare red and blue curves in Figure 3B). Interestingly, the identity
information was available much earlier than the direction estimates. Similar to object motion
direction estimates, the identity estimates also scaled with neural sampling size – but reached
higher accuracies with much fewer neurons (Figure 3C; red dashed and blue dashed lines
showed the accuracies of the monkeys during an object identification and direction
recognition task, respectively). The accuracy and neural sampling-based scaling of object
identification were much weaker when estimated by linear classifiers (Figure 3D, F)
compared to the LSTM-based decoders (Figure 3E, also compare red curves in Figure 3B
and E, and Figure 3C and F). Given that object identity information was available at
significantly lower latencies from the IT cortical responses, we next probed the criticality of
this identity information for the motion direction estimates extractable from the IT population
activity.

Figure 3. Comparing the readout of object identity and motion direction from the population
activity in the IT cortex using temporal and instantaneous strategies. A. Schematic representation
of a Long Short-Term Memory (LSTM) network processing dynamic IT responses to predict object
identity and motion direction. B. The temporal decoding accuracy for object identity and motion

9

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.23.581841doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?gACAFI
https://doi.org/10.1101/2024.02.23.581841
http://creativecommons.org/licenses/by-nc-nd/4.0/


direction from 192 IT sites as a function of time after video onset. The red curve indicates object
identity, showing a faster and significantly higher accuracy (%Δ( identity - motion) = 50.3%,
paired-t-test, p< 0.001; as estimated at the time window 570-600 ms post video onset) than the blue
curve representing motion direction. C. Scaling analysis of decoding accuracy for object identity (red)
and motion direction (blue) with the increasing number of IT neurons. The red curve achieves a
higher accuracy more rapidly than the blue curve, indicating quicker access to object identity
information in the IT cortex. D. Schematic representation of an instantaneous linear readout strategy
employing a linear classifier to decode object identity and motion direction from instantaneous IT
responses. E. Comparative decoding accuracy of object identity and motion direction using an
instantaneous linear model with 192 IT sites over time. The red and blue curves show that object
identity (red) is decoded with greater accuracy than motion direction shortly (~120-150 ms) after the
video begins, compared to motion direction (peaking > 300 ms). F. Scaling of decoding accuracy for
object identity (in red; dashed line represents the extrapolation) and motion direction (in blue; dashed
line represents the extrapolation) in a linear readout model. Unlike the LSTM-based decoders, we
observe that object identity scales with a significantly shallower slope compared to motion direction
across the number of neurons.

Motion direction information within the IT cortex is tolerant to motion-preserving
object appearance removal.

Similar to most object tracking algorithms 36, where a segmented form of the identified object
is often annotated and provided as a reference to be tracked, we observed that object identity
estimates from the IT cortex precede (achieve higher accuracies under the same neural
sampling regime and training set) the object motion direction estimates. Therefore, we next
asked whether this information about the object’s appearance is necessary for the motion
direction estimates from the IT cortex (Figure 2-3). To test that possibility, we removed the
object appearance from 100 original videos (OV) without losing its motion content using a
previously established technique37 (see Methods). We refer to the resulting videos as
appearance-free videos (AFV). We trained two monkeys to perform a binary object
discrimination task (see Methods, Figure S1A) and an 8-way direction estimation task (see
Methods, Figure S1B) and also recorded IT activity (in 2 separate monkeys, 84 sites in total)
while they passively viewed these two types of videos. First, our results reveal that when
monkeys were tasked with identifying a target object that had been stripped of its appearance
(AFV), their performance was significantly impaired and indistinguishable from chance level
(Figure 4B, left panel) compared to their ability to identify the same object in the original
videos (OV) containing appearance information. However, this decrement in performance
was not observed when the task required discriminating the direction of motion: The
monkeys’ performance remained high and statistically indistinguishable whether the object's
appearance was present (OV) or absent (AFV), suggesting that the perception of motion
direction can be behaviorally dissociated from the object's appearance. Next, we asked
whether the IT-population-based decodes of object identity (as shown in Figure 3A;
LSTM-based decoders) are consistent with the behavioral patterns. Indeed, we observed that
removing the object appearance significantly reduced the neural-based decoding accuracy to
chance level for the AFV compared to those for the OV (Figure 4D). Interestingly, we could
decode the motion direction in the video significantly above chance for both OV and AFV.
We observed significant accuracies for both LSTM-based and linear-classification-based
approaches. Notably, the decoders trained (i.e., the same set of weights and biases) with AFV
data also generalized to OV test set responses and vice versa (Figure S2), demonstrating that
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the same motion signal processing in the IT cortex can operate without the presence of an
object.

Figure 4. Decoding motion directions from IT population activity for videos with and without
object appearance. A. The top panel shows two frames from a video (300 ms) of a plane moving in
the northwest direction – the original videos (OV). The yellow highlighting of the plane is not part of
the original video (shown here only for illustration). The bottom panel shows the corresponding
appearance-free version of these video frames, produced by methods described in Ilic et al. 37 –
referred to as the appearance-free videos (AFV). The white outline of the plane is not part of the
video; we outlined it here for comparison to the above video. B.Monkeys (n=2) behavioral accuracies
on two tasks performed on these videos. During the object discrimination task (left panel), the video
containing a target object (with or without the appearance) is followed by a choice screen with two
options (one target object, another distractor object). The monkeys were required to choose the target
object shown in the video (see Supplementary Material). As shown here, monkeys performed
significantly better during the OV than their appearance-free counterparts (Δ OV-AFV = 0.29, paired
t-test, p<0.0001), which were indistinguishable from chance-level performance. During the direction
discrimination task (right panel), monkeys were trained to saccade to one of the eight fixed locations
(see Figure S1) based on the perceived direction of motion of the objects. We observed that monkeys
showed equally high performance (significantly indistinguishable) for both OV and AFV. C. IT neural
firing rates (33 sites in monkey 1 and 51 sites in monkey 2) time averaged across AFV and OV. As
expected, appearance-based videos (OV) drove the IT population’s evoked responses significantly
higher (%ΔIT response (OV - AFV) = 35.05%, t(83) = 8.32, p<0.001, computed at latency 150-200
ms post video onset) than appearance-free videos (AFV). D. Decoding of object identity from the
monkey IT population activity. LSTM-based (trained and tested in a cross-validated way on OV and
AFV responses independently) decoding models linking IT population activity to object identity
(similar to Figure 3B) discrimination perform well above chance levels (p<0.05, permutation test,
270-300 ms post video onset ) for OV but are indistinguishable from chance-level for AFV. E.
Decoding of motion direction from the monkey IT population activity. LSTM-based (trained and
tested in a cross-validated way on OV and AFV) decoding models linking IT population activity to
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direction discrimination perform well above chance levels (p<0.05, permutation test, 270-300 ms post
video onset) >200 ms post video onset for both AFV and OV. Errorbar bands denote s.e.m across
videos.

IT population activity can predict object speed.

Object motion also comprises another important variable in addition to the direction of the
moving object – which is its speed. Therefore, we next asked whether an object’s speed can
also be decoded from the IT cortical responses using non-linear, temporally integrative
(LSTM-based, Figure 5A), and linear regression-based (Figure 5B) methods. We recorded
large-scale activity across the V4 and IT cortices in two macaques while they passively
fixated on brief (300 ms) videos presented at the central 8 deg. Similar to the direction
estimates, we observed that we could decode object speeds with significant accuracies
(greater than chance-level as estimated by permutation tests, see Methods) from the
distributed population activity of the IT cortex. Consistent with earlier results on motion
direction estimates, we observed that the decoding based on V4 population activity was, in
general, weaker than the ones derived from the IT cortex (%Δ( IT - V4) = 16.8%, paired
t-test, p< 0.001; as estimated at the time window 270-300 ms post video onset). The ventral
visual pathway is often associated with the processing of slower foveal information, whereas
the dorsal visual pathway is associated more with fast peripheral information 38,39. Indeed,
consistent with this functional distinction, we observed that IT responses to slower speeds
(e.g., <10 deg/s) were higher than with higher speeds (Figure 5C; top inset). In addition, we
could also better decode (with more accuracy) lower speeds than higher speeds (Figure 5C),
and the accuracies were significantly negatively correlated with object speed (Pearson R =
-0.39, p = 0.01).

Figure 5. Decoding object motion speed from IT population activity. A. The accuracy of speed
discrimination over time using an LSTM network that receives the dynamic IT responses as input,
with a sample size of 192 IT sites. The bottom panel shows that the resulting decoding accuracies
(cross-validated across videos) are significantly greater than the chance level (p<0.05, permutation
test, at time bins > 150 ms). The shaded area represents the standard error of the mean across videos.
B. The accuracy of an instantaneous linear classifier using independent 30 ms bins of IT responses
from 0 ms post video onset (using 192 IT sites), with the shaded area indicating the standard error of
the mean across videos. Similar to the LSTM readout, decoding accuracy reaches a level significantly
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higher than chance, approximately 150 ms after video onset. C. The relationship between object speed
(degrees/s) and decoding accuracy. We could better decode (with more accuracy) lower speeds than
higher speeds, and the accuracies were significantly negatively correlated with object speed (Pearson
R = -0.39, p = 0.01). Inset: Neural response time course for low versus high-speed stimuli,
highlighting the differential activation over time (higher average firing rates for lower speeds).

IT population activity-based decodes predict object identity-dependent speed
discrimination behavior.

So far, our results have provided evidence for decodable object motion information within the
ventral stream population activity, specifically within the IT cortex of the macaques during
passive viewing of the videos. However, is this signal just an epiphenomena, or can this be
linked to the pattern of responses measured during object-motion-dependent behaviors? To
test the behavioral linkage, we first designed an object-dependent speed discrimination task.
As shown in Figure 6A, monkeys (n=2) fixated on a cross for 100 ms to initiate a trial, after
which we presented a 300 ms video containing two objects (one moving faster than the
other). After a blank period of 100 ms, we presented canonical images of those two objects,
and the monkeys had to select the one that moved faster. In this task, the monkeys achieved
high accuracy (average accuracy = 0.82 ± 13, Mean ± standard deviation, percent correct,
Figure 6B) and showed reliable behavior (trial split-half reliability of estimating accuracy per
image = 0.89). We also recorded the neural responses to these videos across the IT cortex
during passive viewing of the 100 Test videos in two task-naive macaques. Cross-validated
linear decoding of the task accuracies (see Methods) shows that neural responses averaged
between 340-410 ms post-video onset produced decoding patterns that were significantly
consistent (noise corrected R = 0.6, 192 IT sites, estimated at 340-410 ms post-video onset,
Figure 6C) with the behavioral patterns. As demonstrated earlier, these estimates are limited
by the neural sampling size of the experiments and show a general trend of improvement with
the number of neurons (as estimated by varying the number of neural sites sampled randomly
from 2 to 120, Figure 6D) – establishing the possibility of a highly critical functional role of
the IT cortex in these behaviors.
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Figure 6. Linking IT population activity with speed discrimination behavior. A. Speed
discrimination task. Monkeys (n=2) fixated on a cross for 100 ms to initiate a trial, after which we
presented a 300 ms video containing two objects (one moving faster than the other). After a blank
period of 100 ms, we presented canonical images of those two objects, and the monkeys had to select
the one that moved faster. B. Distribution of accuracies of the monkeys’ behavior (averaged per
video) across 100 videos. The dashed line indicates the chance level of accuracy, and the red arrow
shows the average accuracy (0.82 ± 13, mean ± standard deviation). C. Consistency of IT-based
neural decodes of the velocity discrimination task (see Methods) across multiple choices of temporal
decoder parameters (these were selected from two free parameters: time start and bandwidth with
respect to the onset of the video, as schematically demonstrated in the inset). The highest
consistencies were observed for signals integrated between 340 to 410 ms post video onset (noise
corrected R = 0.6, 192 IT sites). D. Analysis of the relationship between the number of neural sites
sampled and the consistency of their collective decoding with the monkeys' behavioral responses. The
selected time bin (340-410 ms post-video onset) that yielded the highest consistency is highlighted,
with the trend line indicating improved consistency with an increased number of neural sites.

Microstimulation of IT provides causal evidence for the critical role of the IT cortex in
the speed discrimination task.

While the correlation of behavioral patterns and neural decoding accuracies strengthens the
possibility of a functional role of the IT cortex in these behaviors, it is not a direct causal test
of this linkage. Therefore, we performed microstimulation of the IT cortex (to disrupt its
activity as demonstrated in previous studies40,41 temporarily) in two macaques (left and right
hemispheres in each monkey, respectively) during the tasks to test whether the animal
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produces specific contralateral deficits implicating the causal role of IT. We applied 10 uA of
bipolar pulses for 150 ms (starting 50 ms post-video onset) across 16 randomly chosen sites
on the anterior array. The stimulation pulses were biphasic, with the cathodal pulse leading.
Each pulse was 0.2 ms in duration, with 0.1 ms between the cathodal and anodal phases. On
each trial, the objects started from two distinct positions on opposite hemifields, and the
movement of the two objects was primarily present in their respective hemifields (with minor
cross-overs). We specifically implemented this aspect in the design to test the contralateral
nature of the microstimulation. Microstimulation significantly reduced accuracy in the speed
discrimination task for both ipsilateral (p<0.001, t(99)=9.53, paired t-test) and contralateral
targets (p<0.001, t(99)=5.33, paired t-test). However, importantly, consistent with the known
lateralization of the IT cortex 42, we observed a more pronounced effect (Δ for ipsi and contra
shown in the inset) on the accuracy of detecting contralateral versus ipsilateral targets
(p<0.001, t(99)= 4.52, paired t-test).

Figure 7. Causal test of the role of IT in object motion speed discrimination. A.Microstimulation
Conditions. We stimulated in two primary conditions – ipsilateral (when the target object that moved
faster was in the ipsilateral hemifield compared to the site of stimulation) and contralateral (when the
target object that moved faster was in the contralateral hemifield compared to the site of stimulation).
Microstimulation (10 µA) was always applied across 16 randomly chosen sites on the anterior array.
B. Comparison of behavioral accuracy video-by-video (each dot refers to a video) on the task (see
Figure 6A) during no stimulation trials and stimulation trials for the contra (green) and ipsi (red)
conditions. C. Microstimulation significantly reduced accuracy in the speed discrimination task for
both ipsilateral (p<0.001, t(99)=9.53, paired t-test) and contralateral targets (p<0.001, t(99)=5.33,
paired t-test). We observed a more pronounced effect (Δ for ipsi and contra shown in the inset) on the
accuracy of detecting contralateral versus ipsilateral targets (p<0.001, t(99)= 4.52, paired t-test).

IT population activity predicts object-motion-based future event prediction behavior.

In the speed discrimination task described above, the behavioral report can be accurately
estimated based on the information presented during the video. It does not require a
prediction of the future based on those estimations. We designed a future event detection task
to ask whether IT-based motion estimates could be used to make forward predictions of
events. This task links our study to ideas about an intuitive physics engine running in the
brain 43, as often proposed in the cognitive sciences. We presented the monkeys with a 300
ms video containing a ball and a car moving at different speeds. The ball moved vertically
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downwards, and the car moved horizontally to the right (Figure 8A). Depending on their
velocities, they would either collide (condition 1), the ball would move past the car (condition
2), or the car would move past the ball (condition 3). Following a 100 ms blank screen after
the Test video, the monkeys were shown two images on the choice screen depicting two
possible conditions (one likely and one unlikely future event). Given the brief video, their
task was to choose the likely outcome of the video from the choice frames within the next
1500 ms. The videos were always presented such that they were shorter than the full event.
We tested the animals (n=2) on three phases of the task. In phase 1, we showed the animals a
training set of 400 videos (full version; 700 ms duration per video) while they passively
fixated on these videos. The primary purpose was to make them aware of the possibilities in
these videos (i.e., familiarization with conditions 1-3). Next, on this subset of 400 videos
(training set), we trained the animals to perform the future event detection task. Lastly, we
used a held-out video (test) set with 105 videos to measure their behavioral reports. On
average, the monkeys showed an accuracy of 0.68 (significantly higher than chance-level;
t-test, t(104) = 13.5, p<0.001; Figure 8B). On the other hand, we recorded spiking activity
across the IT cortex ( 192 IT sites) in 2 task-naive macaques while they passively viewed the
shortened (300 ms) Test videos. We observed that consistent with previous results, the
IT-based linear decodes could attain monkey-like significant high accuracies in these tasks,
which peaked around 200 ms post video onset (Figure 8C). Similar to the analyses for
Figure 6C, we performed a cross-validated search to identify the most behaviorally aligned
decoder parameter. Interestingly, the IT-based predictions from a temporal integration
window of 350-400 ms post video onset across videos showed the highest significant
correlation (Pearson R=0.4, p<0.001, permutation test) with the measured behavioral
accuracies. This time window is very similar to the time window that produces the best match
for the speed discrimination task (Figure 6C) – suggesting that the macaque brain might rely
on the temporal code most relevant for speed estimates to make future predictions of objects’
trajectories. Figure 8D demonstrates how the correlations for this 50 ms time bin evolve (the
gray-shaded region refers to the null distribution computed by shuffling the condition labels,
re-estimating the decoding accuracies, and correlating them with the behavioral data).
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Figure 8. Linking IT population activity with speed-based future event prediction task. A. Future
event prediction task. Monkeys viewed a 300 ms video containing a moving ball and a car. Both
objects moved at varying speeds. The ball moved vertically downwards, and the car moved
horizontally to the right. Depending on their velocities, they would either collide (condition 1), the
ball would move past the car (condition 2), or the car would move past the ball (condition 3). The
videos were always shorter than the full event. The monkeys were shown two images on the choice
screen depicting two possible conditions. Given the brief video, they had to choose the likely outcome
in the video. B. Distribution of accuracies of the monkeys’ behavior (averaged per video) across 105
videos. The dashed line indicates the chance level of accuracy, and the red arrow shows the average
accuracy (0.68 ± 13, mean ± standard deviation). C. The ability of population activity of IT was
measured during the video to make predictions about the outcome of the task. The IT-based linear
decodes could attain monkey-like significant high accuracies in these tasks, which peaked around 200
ms post video onset D. The correlation of the IT-decoder (timebin of 50 ms) output accuracies per
video with those measured from the monkeys. The decodes estimated from the population activity
measured between 350-400 ms post-video onset showed the highest consistency (Spearman R=0.4)
with the monkey's behavior. Errorbars denote standard deviation across cross-validation splits. The
gray-shaded region refers to the null distribution computed by shuffling the condition labels,
re-estimating the decoding accuracies, and correlating them with the behavioral data.
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Discussion

In this study, we highlighted the critical role of the ventral stream circuits in primate object
motion perception. Our findings revealed that neural signals related to object motion
(direction and speed) are present in the distributed population activity across the macaque
ventral stream — the ones in the IT cortex being more easily decodable with fewer neurons
than those in area V4. We also demonstrated that these signals accurately predict the
behavioral patterns measurable in monkeys during object motion speed discrimination tasks.
Moreover, by demonstrating behavioral deficits induced by perturbation of the IT cortex with
microstimulation, we further confirmed the critical functional role of the IT responses in
generating accurate behavioral reports during motion-related tasks. In the following sections,
we will discuss our results and their broader implications and limitations.

The ventral stream houses key circuits relevant to object motion perception.

Our main finding underscores the ventral stream, specifically areas V4, and IT, as critical to
object motion perception in macaques. This insight aligns with the established role of the
ventral stream in visual object recognition and suggests its involvement extends further to the
domain of motion perception. However, the degree to which foveal object motion processing
is exclusive to the ventral stream remains an open question. While our results indicate that the
IT decodes slower object speeds more accurately, suggesting a ventral stream specialization,
two observations invite further scrutiny into possible dorsal stream contributions. First, we
observed that decoding of fast object speeds (typically attributed to the dorsal stream) also
remains robust, surpassing chance levels (Figure 5C). Second, motion direction information
from appearance-free videos could be extracted with the same neural population code as
object-based videos (Figure 4). These observations hint at a more complex interplay between
ventral and dorsal visual pathways in motion perception than previously understood. Given
our experimental results, a series of causal experiments can now be performed to disentangle
the contributions of these two streams. For instance, manipulating activity in dorsal areas like
MT, MST, and LIP while recording the response of V4 and IT cortex to the same videos as
used in this study could reveal the functional role of the dorsal regions in shaping the object
motion representation in the ventral stream. Additionally, computational models with varying
architectures can be instantiated to offer insights into the potential circuits and computations
that lead to these ventral stream representations. By simulating different aspects of both
streams, we can better hypothesize how the brain might integrate information from these two
pathways to perceive objects in motion.

While our study provides a systematic characterization of object motion decodability from
the ventral pathways, there are several prior reports of motion-related responses in the ventral
stream 28–31,44,45, especially when using stimuli much more complex than those typically used
in the studies of the dorsal stream (such as random dot motion). Does the ventral stream
mechanism process motion de novo (or independently)or augment the preprocessed motion
information available in the dorsal neurons? There might be three distinct sources providing
the initial motion-related signals to the ventral stream for integrating it with object identity
information:
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(1) input from dorsal stream areas such as MT via projections into area V4: Previous studies
have shown that not only neurons in the visual area V4 can be responsive to kinetic gratings
46, but they may also form a motion direction preference map 47, most likely inherited through
monosynaptic connections from area MT 48,49. Indeed, the hierarchical organization of the
ventral stream 50 would allow such direction-selective signals in V4 to feed into the IT cortex.

(2) a subcortical input: There also is evidence for a subcortical motion pathway with the
pulvinar playing a major role 44. The pulvinar, which is heavily connected to MT and MST
26,51,52, contains a significant number of direction-selective neurons 53 and projects to ventral
stream areas, such as V4, TE, and TEO 26,54,55. Therefore, the ventral stream motion responses
can be presumed to reflect an injection of pulvinar motion information.

(3) Feedback originated at higher-order areas such as the prefrontal cortex: Higher-level
cognitive processes like attention, memory, and prediction may influence the IT cortex's
response to motion. Direct connections exist between the prefrontal cortex (PFC) and the
ventral stream sites we studied 56–58. Notably, the PFC shows a substantial presence of
direction-selective responses 59, similar to neurons in area MT. These results suggest that
ventral stream motion-related signals might originate at the PFC level, facilitating the
selection of objects based on their movement direction. This hypothesis contrasts with a pure
sensory analysis of basic visual motion in the dorsal stream.

As mentioned above, a combination of model development with varied hypothesized
architectures 12,13 and goals60 along with targeted brain perturbation studies61 are required to
fully discriminate among these alternatives (while a combination of all three cases is also
plausible).

Causal evidence for the role of IT in object motion perception.

The object motion-related signals we observed in the ventral stream are not epiphenomenal,
as demonstrated by the causal disruption of information processing in the IT cortex via
microstimulation, which impairs the monkeys’ performance in a speed discrimination task
(Figure 7). Given that object processing in IT can be disrupted by electrical,
pharmacological, or optogenetic stimulation 23,62, one explanation of our results can be that
microstimulation of the IT cortex produces an object-specific general deficit across all task
conditions (unrelated to its motion), and this results in the measured behavioral performance
changes. However, if this were the case, we would also expect to find a speed-independent
disruption in behavior when the contralateral hemisphere is stimulated. Our results show a
significantly higher deficit when the faster-moving (Target) object is in the contralateral
hemifield – supporting the hypothesis that stimulation impaired the combined signal of object
motion speed and object identity (aka the “binding”). Our findings, which suggest that ventral
stream motion signals play a crucial role in shaping behavior when selecting relevant objects,
are consistent with results observed in other studies demonstrating that lesioning ventral
stream areas like V4 or TEO reduces monkeys' ability to filter out distractor information
across various feature domains, including motion 63,64.
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Interpreting the timing differences in estimating object identity and motion

In our study, we consistently observed that object identity, whether read out instantaneously
or through temporal integration, was estimated more rapidly than the velocity of object
motion (see Figure 3, Figure S3). This latency differential may arise from several factors.
One hypothesis posits that early identification of object identity is imperative for formulating
predictions about object motion, necessitating that identity estimates precede motion velocity
estimation. However, our analyses contrasting AFV and OV decoding (see Figure 4) do not
substantiate this notion. Another conceivable explanation involves the processing of motion
in the V4 and IT cortices, which could be facilitated by top-down feedback from higher
cortical areas, such as the prefrontal cortex (PFC), or indirectly from dorsal stream regions.
Our current dataset does not provide definitive evidence to refute this hypothesis. To
elucidate the potential influence of these feedback mechanisms, future research should
incorporate targeted recordings from prefrontal regions and employ causal methods to
interrogate these networks. A further explanation we consider is that the observed results may
reflect the inherent dimensionality of the tasks—object identification might intrinsically be a
lower-dimensional problem compared to velocity estimation. This possibility is suggested by
our sample scaling analysis (Figure 3E, F), which indicates that a greater number of neurons
may be required for accurate object motion velocity estimates, resulting in an inference of
increased latency within our sample-limited analyses. To extend our understanding beyond
the data collected from IT cortices, artificial neural network models that are designed to
operate with two streams offer promising avenues for further investigation. In these models,
one stream is trained for single frames or relatively low temporal processing rates, while a
second stream is trained for optical flow or relatively high temporal processing rates (for
example, see 65,66. These models could provide additional insights into the computational
mechanisms underlying these processes and potentially enable strategies to discriminate
amongst these hypotheses.

Dynamic stimuli processing offers insights into integration mechanisms also relevant for
object recognition

In this study, we made another critical observation: object identification using instantaneous
readouts, while adequate for perceiving static images as previously suggested 8, was
significantly less effective (based on lower observed decoding accuracies) than temporally
integrative readouts that accumulate information from IT responses over time (refer to Figure
3B, D). This discrepancy underscores the possible role of spatiotemporal integration in the IT
cortex, where signals are processed over a duration. Contrasting with earlier studies 7,8 where
static images were displayed for 100 ms, the frames in our dynamic stimuli were presented
for approximately 33 ms. This shorter time frame likely contributed to the diminished
decoding performance we observed with linear classifiers. These findings imply that temporal
integration is not just a byproduct but a fundamental aspect of the computations performed in
the IT cortex, particularly under conditions that mimic the dynamic nature of natural vision.
Given these findings, we propose that for object recognition tasks, LSTM-based decoders
may offer a decoding strategy that better aligns with behavior (see 13), even when applied to
static images. This is predicated on the idea that temporal integration is a continuous process
in the visual cortex, essential for interpreting both static and dynamic scenes. To further test
our speculation, future studies could explore using LSTM-based decoding in static image
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recognition tasks. Such research would potentially validate the goodness of temporal
integration strategies and refine our understanding of how visual information is processed in
the brain for decision-making, whether the stimuli are stationary or in motion.

Future constraints and insights for the next generation of ventral stream models

The integration of our study's findings into developing the next generation artificial neural
network (ANN) models of the ventral stream promise a transformative shift in how dynamic
visual information is processed in the computational models. The ability to decode motion
parameters and future predictions directly from the IT cortex offers a unique biological
blueprint for future computational models. This suggests that incorporating ventral
stream-like features into ANNs is not only desirable but critical for achieving a more nuanced
understanding of dynamic visual processing. Current and future ANNs might therefore,
achieve a higher degree of biological fidelity by incorporating ventral stream-like features.
For example, our results (Figure 4) suggest a crucial divergence of IT responses from how
current action recognition models might behave. Previous studies 37 have shown that ANN
performance during action recognition often deteriorates under the challenge of image
perturbations that obscure object appearance. The capability of the IT cortex to faithfully
represent motion parameters and make predictions based on appearance-free videos, without
the reliance on object appearance-based features, provides a compelling argument for
rethinking ANN design with inspiration from the ventral stream visual processing. By
presenting neural data that elucidate how various read-out algorithms can help interpret
object motion based on IT population activity, we offer a dual-purpose tool. First, this data
can be converted into a rigorous benchmark for evaluating the prediction accuracy of a new
class of dynamic ventral stream models (in benchmarking platforms such as Brain-Score 67).
Second, our data can also be used directly to augment the training (see 68) of existing models
that support video processing.

Data and Code Availability

All of the data and code to replicate the results and support future research directions will be
available on https://github.com/vital-kolab/object-motion upon publication of the article.
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Methods

Subjects

Non-human primates

The nonhuman subjects in our experiments were six adult male rhesus monkeys (Macaca
mulatta). All data were collected, and animal procedures were performed, in accordance with
the NIH guidelines, the Massachusetts Institute of Technology Committee on Animal Care,
and the guidelines of the Canadian Council on Animal Care on the use of laboratory animals
and were also approved by the York University Animal Care Committee.

Visual Stimuli

High-quality images of single objects were generated using free ray-tracing software
(http://www.povray.org), similar to a previous study 8,69. Each image consisted of a
two-dimensional (2D) projection of a three-dimensional (3D) model (purchased from Dosch
Design and TurboSquid) added to a random background. The ten objects chosen were bear,
elephant, face, apple, car, dog, chair, plane, bird, and zebra. By varying six viewing
parameters, we explored three types of identity while preserving object variation: position (x
and y), rotation (x, y, and z), and size. All image frames were achromatic with a native
resolution of 256 × 256 pixels.

Generation of videos for IT-based object motion speed and direction readout estimation

We first rendered the 2D images of the objects and pasted them on uncorrelated backgrounds
as mentioned above. Then, based on the chosen speed (degree/s derived from pixels/s given
8-degree 256 x 256 frames), and the direction, the object was moved an adequate number of
pixels programmatically in MATLAB while keeping the background stationary.

Generation of videos for the object motion speed discrimination task

For the speed discrimination tasks, we first selected the 2D rendered versions of two objects
(a target object that will move faster and a distractor object that will move slower). We then
randomly selected two attributes for these objects. The first one was which object would be
placed on the right hemifield and which would be placed on the left hemifield. Then, we
randomly selected a motion direction for each of these objects. Based on the motion
directions, we decided whether the object would be placed toward the periphery of the image
or the center. If the motion trajectory places the object out of the frame (e.g., leftward motion
for an object placed on the right edge of the image), we choose the opposite direction for that
object. Once the initial position, the motion direction, and speed (also assigned randomly)
were determined, we added the objects on top of an uncorrelated naturalistic background. We
moved the objects at each frame with the pixel shifts that were appropriately adjusted for
their directions and velocity choices while keeping the background stationary. Using this
approach, we generated 100 videos, 10 per target object.

22

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.23.581841doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?1v7lfy
https://doi.org/10.1101/2024.02.23.581841
http://creativecommons.org/licenses/by-nc-nd/4.0/


Generation of videos for the future event prediction task

These videos were generated in MATLAB using three main images – 1) a ball, 2) a car, and
3) a background image of a road crossing. For each video, the background image remained
stationary. The position of the ball was initialized at the top (of the y-axis) and center (of the
x-axis), and that of the car was initialized at the far left (x-axis) and center (of the y-axis). We
then moved both of these objects by a specific amount of pixels/s based on a random
selection of speeds of these objects. The ball moved vertically downwards, and the car moved
horizontally to the right. If the pixels of the ball and car coincided in any frame, that
determined a collision, and the ball deflected from its path.

Generation of appearance-free videos

To generate a noise pattern consistent with the motion, we first generated a random frame,
where p refers to the pixel space. We moved this noise field forward using a flow field 𝑣(𝑝, 𝑡)
derived from the original video with an optical flow estimation algorithm, where t𝐼(𝑝, 𝑡)
refers to the total number of frames in the video. Since is not an integer field but can𝑣(𝑝, 𝑡)
contain subpixel motion, the resulting warped results do not perfectly align with the
underlying pixel grid. We, therefore, used the nearest neighbor interpolation method to align
the newly transformed image to the underlying pixel grid. For more details, refer to Illic et
al., 202237. Similar other methods70 have also been developed.

Behavioral Tasks

Videos were presented for various tasks (see descriptions below) on a 24-inch LCD monitor
(1,920 × 1,080 at 60 Hz) positioned 42.5 cm in front of the animal.

Passive fixation task

During the passive viewing task, monkeys fixated on a white circle (0.2°) for 300 ms to
initiate a trial. We then presented a video (300 ms or 600 ms depending on the tasks; see
below) followed by a 100 ms gray (background) blank screen, a fluid reward, and an
inter-trial interval of 500 ms, followed by the next sequence. We aborted the trials if the gaze
was not held within ±2° of the central fixation circle at any point during the video
presentation.

Binary object discrimination task

Monkeys were trained to fixate on a cross (0.2°) for 300 ms to initiate a trial. The trial began
with presenting one image from a pool of 200 for 100 ms. This was followed by a 100-ms
blank gray screen. Then, a screen with two images was shown: one was a canonical image of
the correct (target) category, and the other was a canonical image of the distractor. The
monkeys could look at these images for up to 1500 ms. They indicated their choice by
making a saccade and holding their gaze on the target image for 700 ms. If the monkeys did
not hold their gaze within a small window (±2°) before the choice screen appeared, the trial
was aborted. To facilitate training and behavioral data collection, the monkeys also performed
the same task in their home cages 71, with the only difference being that they indicated their
choice by touching a touchscreen instead of maintaining their gaze on the selected target for
700 ms.
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Object motion direction estimation task

Monkeys fixated on a cross (0.2°) for 300 ms to initiate a trial. We then presented a video of
an object randomly picked from a pool of 200, moving toward one of the eight directions
(left, right, up, down, up and left, up and right, down and left, down and right). Then, a blank
gray (background) screen was presented for 100 ms, followed by a choice screen with eight
small dots (0.2°) located in eight locations corresponding to the eight target movement
directions, presented for 300 ms. Monkeys were trained to make a saccade to one of these
eight fixed locations based on the perceived direction of motion of the objects. We aborted
the trials if the gaze was not held within ±2° of the central fixation circle at any point during
the video presentation.

Speed discrimination task

Monkeys were trained to fixate on a cross for 100 ms to initiate a trial. A total of 100 videos
were presented in the study, each lasting 300 ms and featuring two objects randomly selected
(out of a pool of 10), moving with differing speeds – one moving faster (Target) than the
other (Distractor) and each presented in a different hemifield. Following each video, a blank
screen was presented for 100 ms. After this, canonical images of both objects appeared, and
the monkeys had to select the one that had moved faster by making a saccade to that object
and fixating on it for 700 ms. The videos contained movement in eight uniformly sampled
directions, including four along the cardinal axes and four along the oblique axes.

Future event prediction task:

We tested the animals on three phases of the task. In phase 1, we showed the animals a
training set of 400 videos (full version; 700 ms), while they passively fixated on these videos.
The main purpose was to make them aware of the possibilities in these videos (i.e.,
familiarization with conditions 1-3). Next, on this subset of 400 videos (training set), we
trained the animals to perform the future event detection task. Lastly, we used a held-out
video (test) set with 105 videos to measure their behavioral reports. Monkeys were shown the
first 300 ms of these 105 videos (of a ball and a car in motion, each moving at different
speeds). The ball's movement was directed vertically downward, while the car's trajectory
was horizontal, moving to the right. Depending on their respective speeds, three scenarios
were possible: a collision between the two objects (condition 1), the ball passing ahead of the
car (condition 2), or the car passing ahead of the ball (condition 3). The speed of the car and
ball were selected randomly from the following set: [7 deg/s to 40 deg/s]. The length of the
videos was intentionally kept shorter than the entire duration of the event. On the choice
screen lasting for 1500 ms, the monkeys were presented with two images, one representing
the correct likely scenario and the other one representing one of the two unlikely scenarios.
Based on the short video they watched, they had to determine and select the most probable
outcome depicted in the video by making a saccade to the image representing the correct
scenario and holding their gaze on it for 700 ms (or touching the correct image in the case of
the in-cage experiment).

24

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 28, 2024. ; https://doi.org/10.1101/2024.02.23.581841doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.23.581841
http://creativecommons.org/licenses/by-nc-nd/4.0/


Neural Recordings

We surgically implanted each monkey with a headpost under aseptic conditions before
training on the behavioral tasks. After behavioral training, we recorded neural activity using
10 × 10 microelectrode arrays (Utah arrays, Blackrock Microsystems). A total of 96
electrodes were connected per array. Each electrode was 1.5 mm long, and the distance
between adjacent electrodes was 400 μm. Before recording, we implanted each monkey with
multiple Utah arrays in the IT cortex and the V4 cortex. IT arrays were placed inferior to the
superior temporal sulcus and anterior to the posterior middle temporal sulcus. During each
recording session, band-pass filtered (0.1 Hz to 10 kHz) neural activity was recorded
continuously at a sampling rate of 20 kHz using Intan Recording Controller (Intan
Technologies, LLC). The majority of the data presented here were based on multiunit activity.
We detected the multiunit spikes after the raw data was collected. A multiunit spike event
was defined as the threshold crossing when voltage (falling edge) deviated by more than three
times the standard deviation of the raw voltage values.

Neural site inclusion criteria: Image rank-order response reliability per neural site: To
estimate the reliability of the responses per site, we computed a Spearman-Brown corrected,
split half (trial-based) correlation between the rank order of the image responses (all images).
All neural sites which showed a response reliability greater than zero was used in the
analyses.

Microstimulation of the IT cortex

We used the iridium oxide-coated Utah arrays to perform the microstimulation of the IT
cortex. Before the microstimulation experiments, we first selected the electrodes to stimulate.
First, we identified all electrodes with an impedance between 100k ohm and 1M ohm. Then,
we randomly selected 16 out of these electrodes. We applied 10uA of bipolar pulses for 150
ms starting 50 ms post-video onset. The stimulation pulses were biphasic, with the cathodal
pulse leading. Each pulse was 0.2 ms in duration, with 0.1 ms between the cathodal and
anodal phases.

Neural Data Analysis and Statistics

Estimating Object Position

We estimated object positions from the neural population activity using cross-validated linear
regression (PLS regression with 20 components). The neural responses were first averaged
between 70 and 170 ms (post-image onset, similar to 25). We then used a 10-fold
cross-validation scheme to divide the neural responses and the corresponding x and y object
positions (per image) into train and test sets. Then, we estimated the weights and biases for
the regression model using the training dataset and tested on the held-out image set. We used
a total of 640 images (8 objects, 80 images per object). The goodness of the model was
assessed as the Pearson correlation between the neural predictions and the ground truth
positions for the x and y positions, respectively.
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Estimation of object motion direction

LSTM classification-based estimates

The neural population responses averaged for 30 ms time bins (from 0 ms to 540 ms) was
entirely passed on to an LSTM network (using the bilstmLayer function in MATLAB) with
the following parameters: outputSize of 200, and outputMode: ‘sequence’. The output of the
LSTM network was then fed to a fullyConnectedLayer (with eight nodes), a softmaxLayer,
and a classificationLayer (with eight nodes corresponding to the eight directions used). We
used 10-fold cross-validation. For the object identity estimates, we used the same approach,
but instead of 8 nodes, we used ten output nodes corresponding to the ten object categories.

Linear classification-based estimates

For the linear classification (Figure 2E-F, 3E-F), the neural population responses averaged
for 30 ms time bins (from 0 ms to 570 ms) were used independently with linear classifiers
(linear discriminant analysis). We used 10-fold cross-validation across the videos to train
eight one-vs-all LDA classifiers, each representing one specific motion direction.

Estimation of object speed

LSTM regression-based estimates

The neural population responses averaged for 30 ms time bins (starting from 0 ms to 570 ms)
were entirely passed on to an LSTM network (using the bilstmLayer function in MATLAB)
with the following parameters: outputSize of 200, and outputMode: ‘sequence’. The output of
the LSTM network was then fed to a fullyConnectedLayer (with one node), and a
regressionnLayer (with one node corresponding to the output speed). We used 10-fold
cross-validation.

Linear regression-based estimates

For the linear regressions (in Figure 5B), the neural population responses averaged for 30 ms
time bins (from start times of 0 ms to 570 ms) were used independently with linear regression
(PLS regression). We used 10-fold cross-validation across the videos to train the PLS
regression parameters (with 20 components) for speed prediction.

Predicting the speed discrimination task accuracies

We averaged the neural responses per site according to various options of tStart and binwidth
(inset, Figure 6C) to generate multiple sets of population responses per video. Each
parameter setting of tStart and binwidth can be considered as a specific decoding algorithm
(indicated as separate dots in Figure 6C). For each choice of decoding algorithm, we then
regressed the population responses onto the video-by-video task accuracy estimated from the
behavioral measurements. This was done using a 10-fold cross-validation. Therefore, we
generated held-out predictions for each video (when it was part of the held-out test set). The
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predictions were correlated (Spearman correlation) with the empirical behavioral accuracies
to estimate the consistency between the neural decodes and the behavior. We also estimated
the trial split-half correlation (internal consistency) for the video-by-video behavioral
accuracies and the neural predictions (per decoder). The square of the multiplication of these
two estimates served as the noise ceiling for each decoder. The values in the y-axis of Figure
6C and D are the Spearman correlations corrected (divided by) the individual noise ceilings.

Predicting the future events from neural data

Each video belonged to one of the three outcomes, based on whether the ball and the car
collided. Depending on their speeds, they would either collide (condition 1), the ball would
move past the car (condition 2), or the car would move past the ball (condition 3). We trained
a linear classifier (regularized LDA) to map the neural data (population responses) averaged
across specific time intervals post video onset (as described in earlier analyses) to each video
label in a cross-validated way (10-fold cross-validation). The IT-based video-by-video
average accuracies were estimated on held-out sets and correlated (Spearman R) with the
measured video-by-video average behavioral accuracies (as shown in Figure 8D).

Statistical analyses and significance testing

For most analyses (as mentioned specifically in the Results text), standard parametric paired
t-tests and Pearson and Spearman correlations were used. For other cases, we used
non-parametric permutation-based null distribution estimation and statistical tests (see
below).

Permutation tests to assess the statistical significance of decoder performances.

We used a permutation test to estimate the statistical significance of decoding accuracy for
motion speed or direction for the above-mentioned decoding approaches. We randomly
shuffled the direction, speed, or event condition labels (repeated 1000 times) and
re-performed the decoding analysis for each repeat to construct a null hypotheses space. A
timepoint was declared statistically significant if the values with the non-shuffled decoding
accuracy were above the 95% CI (i.e., the standard deviation) of the null distribution.
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Supplementary Material

Object motion representation in the macaque ventral stream – a gateway to understanding the
brain’s intuitive physics engine

Authors
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Figure S1. A. Object identity recognition task. Monkeys fixated on a small white dot for 300 ms, after
which a Test video is presented for 300 ms, showing an object moving within an 8° background. After
a brief 100 ms blank screen, we presented canonical images of those two objects for 1500 ms, and the
monkeys had to select the one that matched the object identity during the Test video by making a
saccade to that object. B. Object motion direction discrimination task. Similar to the object identity
task in A, except that in the response phase monkeys were tasked with indicating the motion direction
of the object by making a saccade towards one of the eight possible locations corresponding to the
motion direction, within 1500 ms.
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Figure S2. Decoding motion directions from IT population activity for videos with and without
appearance information. LSTM-based decoding models linking IT population activity to object
motion direction discrimination perform well above chance levels (p<0.05, permutation test)
approximately 200 ms post video onset for both appearance-free videos (AFV) and original videos
(OV), with the left graph representing models trained on OV and tested on OV (green) and AFV
(black), and the right graph depicting models trained on AFV and tested on both OV (green) and AFV
(black). In both cases, object motion direction decoding accuracy reaches a level significantly above
the chance level, as indicated by asterisks in the figure. Errorbar bands denote s.e.m across videos.

Figure S3. Comparison of dynamics of object motion identity and speed decodes from the IT
population activity. Both object identity (in red) and motion speed (in blue) have been estimated
using a regularized LDA classifier based on the instantaneous (30 ms averaged) population responses
across 192 IT sites (pooled across two monkeys). Similar to motion direction decodes, speed estimates
lag behind the object identity estimates.
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